Extreme Learning Machine
by Kemal Erdem | @burnpiro
ELM what?
- Guang-Bin Huang - "Extreme learning machine: Theory and applications" 2006
- Does not depend on backpropagation!
ML Basics - SLFN
Single hidden Layer Feedforward Neural network © Shifei Ding under CC BY 3.0
ELM
ELM structure © Shifei Ding under CC BY 3.0
ELM - Equations
$$
\small
o_j = \sum_{i=1}^{L}\beta_ig_i(x) = \sum_{i=1}^{L}\beta_ig(w_i * x_j + b_i), j = 1,...,N
$$
$$
T = H\beta
$$
Where $H$ is called the hidden layer output matrix
ELM - Vector version
$$
H = \begin{bmatrix}
g(w_1 * x_1 + b_1) & ... & g(w_L*x_1+b_L) \\
\vdots & ... & \vdots \\
g(w_1 * x_N + b_1) & ... & g(w_L * x_N + b_L)
\end{bmatrix}_{N \times L}
$$
$$
\beta = \begin{bmatrix}
\beta_1^T \\
\vdots \\
\beta_L^T
\end{bmatrix}_{L \times m}
T = \begin{bmatrix}
t_1^T \\
\vdots \\
t_N^T
\end{bmatrix}_{N \times m}
$$
ELM algorithm
- Randomly assign weight $w_i$ and bias $b_i$, $i = 1,...L$
- Calculate hidden layer output H
- Calculate output weight matrix $\hat\beta = H^\dagger T$
- Use $\hat\beta$ to make a prediction on new data $T = H\hat\beta$
Network performance
$$
\begin{array} {|r|r|}\hline \text{Problems samples} & \text{Training samples} & \text{Testing} &
\text{Attributes} & \text{Classes} \\ \hline \text{Satellite image} & 4400 & 2000 & 36 & 7 \\
\hline \text{Image segmentation} & 1500 & 810 & 18 & 7 \\
\hline \text{Shuttle} & 43500 & 14500 & 9 & 7 \\
\hline \text{Banana} & 5200 & 490000 & 2 & 2 \\ \hline \end{array}
$$
Testing env: Pentium 4, 1.9 GHZ CPU (it's 2006!!!)
Network performance
$$
\begin{array} {|rr|}
\hline \text{Problems} & \text{Algorithms} & \text{Training [s]} & \text{Testing[s]} & \text{Acc Train [%]} &
\text{Acc Train Dev [%]} & \text{Acc Test [%]} & \text{Acc Test Dev [%]} & \text{Nodes}\\
\hline \text{Satellite_image} & ELM & 14.92 & 0.34 & 93.52 & 1.46 & 89.04 & 1.50 & 500 \\
& BP & 12561 & 0.08 & 95.26 & 0.97 & 82.34 & 1.25 & 100 \\
\hline & & & & & & & & \\
\hline \text{Image_segment} & ELM & 1.40 & 0.07 & 97.35 & 0.32 & 95.01 & 0.78 & 200 \\
& BP & 4745.7 & 0.04 & 96.92 & 0.45 & 86.27 & 1.80 & 100 \\
\hline & & & & & & & & \\
\hline \text{Shuttle} & ELM & 5.740 & 0.23 & 99.65 & 0.12 & 99.40 & 0.12 & 50 \\
& BP & 6132.2 & 0.22 & 99.77 & 0.10 & 99.27 & 0.13 & 50 \\
\hline & & & & & & & & \\
\hline\text{Banana} & ELM & 2.19 & 20.06 & 92.36 & 0.17 & 91.57 & 0.25 & 100 \\
& BP & 6132.2 & 21.10 & 90.26 & 0.27 & 88.09 & 0.70 & 100 \\
\hline \end{array}
$$
Early evolution of ELMs
- I-ELM (incremental) 2006 - add new nodes to hidden layer and froze existing ones
- P-ELM (pruning) 2008 - start with a huge network and remove nodes
- Regularized ELM 2009 - $\hat\beta = \left (\frac{1}{C}+H^TH \right )^{-1} H^TT$
- TS-ELM (two-stage) 2010 - combination of I-ELM and P-ELM
- V-ELM (voting) 2013 - create many ELMs and remove nodes base on misclassification results
- KELM (kernel) 2014 - kernel function instead of $HH^T$
- ELM-AE (autoencoder) 2014 - unsupervised mapping
Changes in ELM structure - ELM-LC
$$
H^{\dagger} = \begin{cases}
(H^THH^T)^{-1} & N \leq L \\
(H^TH)^{-1}H & N > L
\end{cases}
$$
ELM goes Deep Learning - (TELM, MELM, DELM)
A Multiple Hidden Layers Extreme Learning Machine Method and Its Application 2017 - D.
Xiao, B. Li, and Y. Mao
A Multiple Hidden Layers Extreme Learning Machine
Method and Its Application 2017 - D. Xiao, B. Li, and Y. Mao
A Multiple Hidden Layers Extreme Learning Machine
Method and Its Application 2017 - D. Xiao, B. Li, and Y. Mao
Benchmarks
$$
\begin{array} {|rr|}
\hline \text{Dataset} & \text{Algorithms} & \text{Acc Test [%]} \\
\hline \text{CIFAR-10} & \text{ELM 1000 (1x)} & 10.64 \\
& \text{ELM 3000 (20x)} & 71.40 \\
& \text{ELM 3500 (30x)} & 87.55 \\
& \text{ReNet (2015)} & 87.65 \\
& \text{EfficientNet (2019)} & 98.90 \\
\hline & & & & & & & & \\
\hline \text{MNIST} & \text{ELM 512} & 92.15 \\
& \text{DELM 15000} & 99.43 \\
& \text{RNN} & 99.55 \\
& \text{BP 6-layer 5700} & 99.65 \\
\hline \end{array}
$$
Image Super-Resolution by KELM
Image super-resolution by extreme learning machine, 2012 - Le An, Bir
Bhanu
Wind speed prediction in France
An efficient scenario-based and fuzzy self-adaptive learning particle swarm
optimization approach for dynamic economic emission dispatch considering load and wind power uncertainties. 2013
- Bahmani-Firouzi B, Farjah E, Azizipanah-Abarghooee R
Energy price forecasting
Electricity price forecasting with extreme learning machine and bootstrapping 2012
- X. Chen, Z.Y. Dong, K. Meng, Y. Xu, K.P. Wong, H.W. Ngan
3D shape segmentation
3D Shape Segmentation and Labeling via Extreme Learning Machine 2015 - J. Tang, C.
Deng and G. Huang
Object tracking
Extreme Learning Machine for Multilayer Perceptron 2014 - Zhige Xie, Kai Xu,
Ligang Liu, Yueshan Xiong
References
- "Extreme learning machine: Theory and applications" 2006 G.B. Huang, Q.Y. Zhu, C.K. Siew
- “Extreme learning machine for regression and multiclass classification” 2012 - G.-B. Huang, H. Zhou, X.
Ding and R. Zhang
- "Clustering in Extreme Learning Machine Feature Space" 2014 - He Qing, Xin Jin, Changying Du, Fuzhen
Zhuang and Zhongzhi Shi
- “Deep Extreme Learning Machine and Its Application in EEG Classification” 2015 - S. Ding, N. Zhang, X. Xu,
L. Guo and J. Zhang
- "Extreme Learning Machine: A Review." 2017- Albadr, Musatafa & Tiuna, Sabrina.
- “A Multiple Hidden Layers Extreme Learning Machine Method and Its Application” 2017 - Dong Xiao, Beijing
Li and Yachun Mao
- "Extreme Learning Machines" 2013 Erik Cambria, Guang-Bin Huang
- “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks” 2019 - Mingxing Tan, Quoc V.
Le
- "ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks." 2015 - Visin, F.;
Kastner, K.; Cho, K.; Matteucci, M.; Courville, A.; Bengio, Y.
References 2
- “Deep, big, simple neural nets for handwritten digit recognition." 2010 - Cireşan DC, Meier U, Gambardella
LM, Schmidhuber J.
- "Fast, Simple and Accurate Handwritten Digit Classification by Training Shallow Neural Network Classifiers
with the 'Extreme Learning Machine' Algorithm". 2015 - McDonnell MD, Tissera MD, Vladusich T, van Schaik A,
Tapson J.
- "A Survey of Handwritten Character Recognition with MNIST and EMNIST." 2019 - Alejandro Baldominos, Yago
Saez and Pedro Isasi
- "An Insight into Extreme Learning Machines: Random Neurons, Random Features and Kernels" 2014 Guang-Bin
Huang
- “Extreme Learning Machine with Local Connections” 2018 - Feng Li, Sibo Yang, Huanhuan Huang, and Wei Wu
- "Image super-resolution by extreme learning machine," 2012 - L. An and B. Bhanu,
- “An efficient scenario-based and fuzzy self-adaptive learning particle swarm optimization approach for
dynamic economic emission dispatch considering load and wind power uncertainties." 2013 - Bahmani-Firouzi B,
Farjah E, Azizipanah-Abarghooee R
- "Electricity price forecasting with extreme learning machine and bootstrapping" 2012 - X. Chen, Z.Y. Dong,
K. Meng, Y. Xu, K.P. Wong, H.W. Ngan
- "3D Shape Segmentation and Labeling via Extreme Learning Machine" 2014 - Zhige Xie, Kai Xu, Ligang Liu,
Yueshan Xiong
Thanks
"There's no such thing as a stupid question!"
Kemal Erdem | @burnpiro
https://erdem.pl